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The transition from the ordered commensurate phase to the incommensurate
Gaussian phase of the antiferroelectric asymmetric six-vertex model is
investigated by keeping the temperature constant below the roughening point
and varying the external fields ( h , v ) . In the ( h , v ) plane, the phase boundary is
approached along straight lines dv = kdh, where (5h,5v) measures the displace-
ment from the phase boundary. It is found that the free energy singularity
displays the exponent 3/2 typical of the Pokrovski-Talapov transition <5/~
const(i5/i)3/2 for any direction other than the tangential one. In the latter case df
shows a discontinuity in the third derivative.
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1. INTRODUCTION

The asymmetric six-vertex model is the extension of the well-known sym-
metric six-vertex model to the case where external fields interact with the
local fluctuating variables ("dipoles" or "arrows").(1~3) On a two-dimen-
sional square lattice, two-valued variables live on links and interact at ver-
tices. At each vertex, of the sixteen possible configurations, only six, those
with an equal number of incoming and outgoing arrows, are allowed. The
relevant Boltzmann weights, which define the model, are grouped into the
matrix /?££,' as shown in Fig. 1. Throughout this paper, we choose inter-
actions that favor antiferroelectric order, while the external homogeneous
two-component field (h, i>), favoring ferroelectric ordering, competes with
the arrow-arrow couplings.
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If one treats the problem with the transfer matrix method, an exact
solution is provided by the Bethe-ansatz.(1~3) The phase diagram was out-
lined in the original paper,(1) while further developments came more
recently'2'5~8) (the list is not exhaustive. Papers dealing with the ferroelec-
tric regime are not included). Since the early works appeared, it has been
known that, in the ( h , v ) plane, there is a closed curve F separating an
antiferroelectrically ordered, commensurate region with finite correlation
length, inside F, from an incommensurate region with infinite correlation
length (critical), outside F. The ordered region includes the symmetric
model point (0, 0) and the free energy in it is field independent

where g is the coupling constant of the gaussian model on which the criti-
cal incommensurate phase renormalizes. As F is approached from this
phase, g -> 2.
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The parameters y, u contain the temperature dependence and will be
defined in the next section. As F is approached from outside (i.e. from the
incommensurate phase), keeping j and u fixed, the free energy is expected
to display a singularity with a characteristic exponent 3/2. More precisely,
the following result has been proven in ref. 4.

Let (h(b),v(b)) be a parametric equation of F, to be given later, with
b some real parameter running in a bounded interval. Lieb and Wu found
that, if h = 0, which implies b = 0, the singular part of the free energy is

yielding a divergence ~8v 1/2 for the susceptibility. (A divergence with
exponent 1/2 was also found for the specific heat at fixed field). Borrowing
a terminology introduced in later years, the transition belongs to the
Pokrovski-Talapov universality class.'9'10)

Equation (1) does not clarify how the singularity depends on both
field components. A further step in this direction was recently achieved by
Noh and Kim(5) who extended the method of ref. 11 to relate macroscopic
quantities such as susceptivities to finite size corrections of transfer matrix
spectra. They showed that, in the critical phase
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In this paper, the question is settled of how, at fixed y, u the singularity
of f ( h , v) depends on both (h, v). The underlying motivation is that the
solvability of the model for arbitrary ( h , v ) provides a way to study exactly
how the leading singular part of the free energy depends on more than one
parameter near the phase transition. Does the singular behavior depends
on how the transition line is approached? While finding the leading
singularity as a function of (h, v) simultaneously has proven to be elusive,
it will be shown that the singularity does depend on the direction in the
(/;, v) plane.

The results are best summarized if one introduces the following nota-
tion. Set

Next, consider a variation into the incommensurate phase h = h(b} + 8h,
v~v(b) + 8v where dv = k Sh and k fixes a slope not tangential to F. Then

so the singularity is governed by an exponent 3/2 for all these directions.
Yet, if F is approached tangentially, which amounts to take 5v = [ v , / h , ] 8h

where c+ +c_ are ^-dependent and are given in Eq. (38). In other words
there is a jump in the third derivative. The calculation breaks down at the
two points on F where h, = 0, i.e. where the tangent to F is parallel to the
y-axis. Those cases were examined in ref. 8 and an analogous conclusion
was reached.

Besides being a sensible statistical model in itself, the asymmetric six-
vertex model has been mapped many times on various kinds of SOS
models'15'16' which, in turn, are often used as simple models of crystals at
equilibrium. Then, the free energy as function of (h, v) describes the surface
of the crystal and the phase of constant free energy corresponds to a flat
crystal facet whose boundary is F. The results of this paper provide a fine
description of how the crystal surface bends near the facet edge.
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The paper is divided as follows. Section 2 presents a summary of the
Bethe ansatz and already known results. Section 3 deals with a perturbative
expansion of the integral equations typical of the Bethe ansatz and Sec-
tion 4 exploits that expansion to determine the singularities of the free
energy.

2. BASIC DEFINITIONS AND SUMMARY OF BETHE ANSATZ

The Boltzmann weights, as given in Fig. 1, are functions of the spectral
parameter u, a notation that seems more natural in the framework of the
Bethe ansatz. Row-to-row transfer matrices

with periodic boundary conditions (PN+i=Pi) commute for different
values of the spectral parameter

Arrow conservation at each vertex, and periodic boundary conditions,
imply that T(u) breaks into blocks between states with the same number
of up (and down) arrows. Let n be the number of arrows reversed with
respect to the reference state | j ],,.,, j >. The Bethe ansatz provides the
following solution to the eigenvalue problem for r(w):(1~3>8)

is an eigenvalue if the "rapidities" {a,}, 7= 1,2,...,« satisfy the set of
equations
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In the limit N -> oo, the rapidities {09} condense into curves in the complex
plane, and are conveniently described by a density function /?(<x)

Eqs. (6) are replaced by a single linear integral equation that governs the
thermodynamics of the model. Introduce the functions (this notation is
somewhat redundant, but it has been adopted in many previous papers and
it will be kept here)

and the vertical polarization

Then, for a state described by a rapidity curve C, the density R(a.)
solves( 1,2,8)

and

where x is the real parameter of the curve. Let A = — a + ib, B = a + ib be
the two endpoints of the curve. (We take for granted that B=-A*
because we wish to consider, in each sector of fixed n, the largest transfer
matrix eigenvalue, which is real and unique by Perron-Froboenius
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theorem."31 Since {a,} -> { —a/} is a symmetry of (6) we expect it to hold
for the solution corresponding to the unique largest eigenvalue in each
sector). Solution of (8) implicitly depends on the endpoints A, B and
contributes to make y, h dependent on a, b through*1>2 i8 )

In the transfer matrix formalism, the free energy is determined by the
largest eigenvalue A0, so, neglecting a factor \/kBT

With an abuse of language, the relevant eigenstate will be called "ground
state." From (5), all eigenvalues are such that A(u) = AK(u) + AL(u). One
of the two addends dominates over the others for specific values of the
parameters. We set

with
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and call F=ma\{FR, FL}. The equilibrium polarization and the free
energy are then determined by

The ground state solution of (8) is explicitly computed when h and v are
sufficiently small.(1~3>8) It corresponds to n = N/2 and, in the N-> oo limit,
to a = n, — y^b^y. Then (8) can be solved by Fourier transform. Even
though the solution has appeared many times in the literature, it is
worthwhile to recall it here to introduce the elliptic function notation

where I'(k)/I(k) = y/n and l(k)(I'(k)) is the complete elliptic integral of the
first kind with modulus k(k' = ^/l -k2}. Replacing (16) into (10) and ( 1 1 )
yields1'-3'8)

where

Within the range —y^b^y there is a crossing between AK and AL. Let's
call id the point where the ground state curve meets the imaginary axis in
the oc-plane. It turns out that AR dominates when d<y — 2u while AL does
when d>y — 2u. One can check it by replacing (16) into (13), (14), or,
more quickly, by the following argument. Select chains such that n = N/2
is an odd number. By virtue of the symmetry {a,} -> { — a/} one a, say a,
has to be pure imaginary. The other n — 1 {<xy.} can be paired to give a
positive contribution to AR and AL so the contribution of a determines the
sign of AR and AL. It is easily seen that

In the thermodynamic limit Im a -> d, and since by Perron-Froboenius
theorem ANimax must be positive, we get the desired result. When crossing,
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Fig. 1. Boltzmann weights in the notation with spectral parameter u compared to that of
ref. 2. The physical region is 0 < u < y.

though, AK and AL connect smoothly, so no singularity of/appears and
one finds from (13), (14) the field independent value of the symmetric six-
vertex model'I2)

The region in the ( h , v ) plane where (19) is valid is bounded by (17) and
the value of the u-field at which the ground state moves away from the
y = 0 sector. This is fixed by the equation
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that yields""3'8)

More precisely, v(b) in (21) runs over half of the curve, the other half is
obtained from the symmetry f ( h , v) = /( —h, —v), which follows trivially
from reversal of all arrows in the statistical sum. Eqs. (17) and (21) provide
the parametric equation (h(b),v(b)) of F.

Equation (19) is the free energy of the symmetric six-vertex model in
the ordered antiferroelectric phase. As the temperature is increased, the
model undergoes a phase transition at y = 0 where the free energy in non-
analytic but continuous with all its derivatives.'12) If the six-vertex model is
mapped into a BCSOS model,'15'2' the transition corresponds to the
roughening point. Therefore, when working with the Boltzmann weights
defined in Fig. 1, one is at temperatures below the roughening point TR. It
can be checked that, at TR, the curve defined by (17) and (21) shrinks to
a point.(2)

3. THE EXPANSION IN 6a, 6b

Equations (8), (10), (11) , (13), (14) determine the thermodynamics of
the system. In principle, one should solve (8) and plug R(OL; A, B) into the
others. This would give

Once the first two are inverted and plugged into the third, one can mini-
mize — F ( y , v , h , y ) — vy w.r. to y keeping h, v fixed. Of course, (8) is not
exactly solvable for a + n. Therefore we attempt an expansion that
generalizes the method that Lieb and Wu'4) applied to the h = 0 case,
where the rapidities are real (b = 0) and everything is a function of a only.
Namely, it will be assumed that a unique solution exists for (8) at least in
a narrow neighborhood of the segment a — n, —y<b<y and that the
dependence of R(a; A, B), y(A, B), h(A, B), F(A, B) is analytical on A and
B in this neighborhood. This assumption is partly warranted by the fact
that, if a solution exists for (8), it develops a pole at a.— ±iy, where £(a)
has poles. In the following calculation, the endpoints are kept far away
from the singularities of the inhomogeneous term. With this assumption,
variations can be computed by taking derivatives in the relevant integral
equations. One starts with (8)
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and so forth by taking further derivatives. When A=A0=—n + ib and
B = B0 = n + ib, —y<b<y all these equations can be solved by Fourier
transform. For instance

Notice that c{ = 0 if b = ±y. This case was dealt with in ref. 8. The solution
is replaced into the analogous expansion for y(A, B), h(A, B) and FR(A, B)
(we will consider only the domain where FR > FL, that is d< y — 2u). As an
example, at the first order

For the field, after using (8) and (11)
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and finally

To evaluate the last two equations it is useful to know the branch cut
structure of fR(a.\u). The cuts run from i(y — 2u) to +/oc and from
— i(y + 2u) to —;oo. The transition from the "AR regime" to the "AL

regime" occurs when the integration path crosses the branch cut at
i(y — 2u), since /Ja;«) has a branch cut also starting from i(y — 2u) but
running all the way down to — ice. Furthermore Im fR(A0', u) = n and
lmfR(B0;u)= -n.

It is now obvious how to go on by taking derivatives. The expansion
has been carried out up to the third order. The variation of each quantity
is a third order polynomial in Sa, Sb. It is convenient to introduce a more
compact notation that brings out the geometrical meaning of the coef-
ficients involved. Define

where we have used (16) to express the series at hand as elliptic functions.
For v(b) one has to distinguish between the two cases b>y — 2u or
b < y — 2u, but the elliptic function expression is the same for both cases

We will also need

h, is negative in the interval —y<b<y, and vanishes when b = ±y. At
these two points, the tangent to F is parallel to the f-axis. Instead, v, = 0
when b = y — 2u. At this point the tangent to F is parallel to the A-axis.
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There is of course another point of this kind on the other half of F,
obtained by the symmetry ( h , v ) - + ( — h , — v ) . Finally it is proven in
Appendix A that the combination v,hl-vlh[, that will appear later, is
definite negative. For polarization and horizontal field one has

whereas, if we set

Here x0 and x3 are non-zero terms that play little role in what follows
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What actually has to be minimized though is OF = — F— vy. Using (21) and
(26)

These expansions reduce to those of ref. 8 when b -> ±7 (the limit should
be taken in the elliptic functions because several series are not convergent
when \b\ = y). No term Sb" appears in (24), and that had to be expected
since the line a = n (i.e. <5a = 0), — y ^ b ^y corresponds toj = 0. Further-
more, while (8) and following equations make perfectly sense for any
values of A and B, one might object that solutions of (6) can always be
taken to have —n^Rea^n. Hence a should vary in [0, n]. The question
at issue is what solutions (6) admit when n>N/2, knowing that, when
n = N/2, they already fill a line stretching from — n to n. Fortunately, the
question can be bypassed. Only variations Sv > 0 will be considered and
it is physically clear that dv> 0 tends to align arrows "up," therefore
brings dy>0, that is n<N/2 and, from (24), <5a<0. This is sufficient
because only the upper half of F, given by (17), (21) is being considered.
The other half, where to drive the system into the incommensurate phase
one needs a variation Sv<0> can, as usual, be recovered from/(/j, t>) =
f(-h,-v).

4. MINIMIZATION OF & AND FREE ENERGY SINGULARITY

The minimum of IF should now be taken with respect to y, when
y, u, h, v are kept fixed. Keeping dh fixed at a given value means that da
and Sb are not independent. Two different ways will be followed to deal
with (24), (25) and (27) and they give the same results.

Neglecting terms Sa3, Sb3 in (25) and solving for db one finds
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when inserted into S&, one gets

All terms neglected are higher order, i.e. Sa4, <5<73 Sh, 6a2 6v 6h2, da 6v8h2,
etc. and it will soon become clear that dropping them is justified. The coef-
ficient c2 is ^-dependent and to know its specific value will not be necessary
in the following.

Let's consider the coefficient of 6a in (29). It is easy to see, from ( 1 7 )
and (21) that it vanishes when the variation (dh, dv) is taken along F. This
had to be expected. The curve F is described by minima of 3F falling on the
line a = n, — y^bt^y or, stated otherwise, with Sa = 0. In fact, the vanishing
of the first order term in (29) implies that <5.F has a stationary point at
da = 0. Suppose next that we approach F along any direction other than
the tangential one, that is

To move into the incommensurate phase one has to take dh > 0 for
k > v,/h, and dh < 0 for k < v,/h,. Clearly the linear terms in the coefficient
of 8a in (29) do not cancel and therefore the terms Sv dh, Sh2 (and higher)
in the same coefficient can be dropped. Same thing can be said about the
So1 term since, obviously, So2« 6a. The term <5a3 must be retained in all
cases, because its coefficient is finite. Instead terms like da3 Sh, Sa4 etc. are
clearly negligible compared with the <5a3 term. It can be seen by inspection
that the terms thrown away in solving (25) are also negligible. The whole
procedure assumes though that a small variation (dh, Sv) brings about a
small displacement (8a,6b] in the minimum of ,"7. The upshot is that it is
legitimate to keep

Once (31) is taken into account, the solution of
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occurs at

Notice that the previous limits on k guarantee that the solution is real. The
sign has been chosen to make sure that da < 0. An elementary check shows
that d2(8&)/d(Sa)2]gaa>Q and it confirms that Sa0 is a minimum. When
8a0 is plugged into (29) one finds that, when Sv = k6h, k=£v,/h,

So the exponent is 3/2 for all these directions. We pass next to the case
where the transition line is approached tangentially, i.e.

We have then

The minimum lies at

Since d2(S^)/d(Sa)2\ga >0, 6a0 is indeed a minimum. Inserting it into 8&
yields a jump in the third derivative of the free energy. Namely, at
h, 6v = v, Sh

where
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When 2u + b = y, v, = 0. Then (38) somewhat simplifies, since g — 0 and the
variation tangential to 7" is just Sh, so

An analogous result, with <5v<->8h was reached in ref. 8, but only for the
two points b= ±y, where the tangent to F is parallel to the u-axis

A second method of calculation will now be presented. From (15) , the
equation determining the equilibrium value of y is

Equation (20) is just a particular case of this condition. It identifies the
value of v for which the minimum occurs at y - 0. If one thinks to invert
(15), (24), F becomes a function of a, b, so(2)

which makes sense if (24) and (25) are indeed invertible, that is if the
denominator in the RHS does not vanish. It is immediate to see from (24),
(25) that this is true for the points we are considering. Instead, the points
b= ±y(h, = 0) are saddle points for h(a, &) . < 8 ) Expanding the denominator
in (40) and retaining terms up to the second order ( to have the third order
in (40) one should expand y, h and F to the fourth order)

Writing v = v(b) + Sv, owing to (21) one arrives at

whose solution yields 8a(Sh, 6v) and Sb(Sh, Sv). Their result has to be used
in (29) to produce the leading singular part of Sf. Again, two cases have to
be distinguished.
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If dv = kdh, k^v,/h,, consistency of (40), (41) requires that 5b ~
cda2 + o(8a2), so at the leading order

Hence

which coincides with (33). 6^ is obviously the same previously used, so
the free energy coincides with (34). Suppose instead dv = k§h but k = v,/ht.
Clearly (41), (42) give Sb = Sh/h, at the leading order and

whose solution is, again (36). Yet, replacing Sb = Sh/h, and (36) into (27)
is not correct. The reason is that a term Sadb appears in (27) that would
require solving (41) and (42) for db up to the next order in 6h. The
problem can be bypassed by replacing e.g. (42) into the term da db of (27).
So one gets

and after setting Sb = dh/h, one is back to (35) and, because of (36), to the
<J/of (37).

APPENDIX

from (30)

822/90/3-4-23

One has to prove that A < 0 for all b in ( — y, y). Setting
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Perform Landen's transform'141

The new half-periods are

and so

A table of signs of dn, en and sn is given in ref. 14. By inspecting the
possible cases one sees that A < 0 always. A possible exception comes from
dn(>'; k) = 0 that is when b + 1u = y. In this case v, = 0 and

There might be a simpler proof.
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